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1 Introduction

It is a theoretically interesting problem to compute the higher-order perturbative correc-

tions received by physical observables in the quark-gluon plasma, especially in view of the

present experimental program at RHIC [1] and of the future LHC heavy ion program. In

particular, one would like to understand theoretically what the regime of validity of per-

turbation theory is, for various observables of interest, at least within the setup of a locally

thermalized plasma.

Theoretical studies of the thermodynamic pressure, which is a quantity naturally acces-

sible to Euclidean space techniques, have revealed a poor convergence of the perturbative se-

ries unless the strong coupling constant assumes unrealistically small values, αs
<
∼ 0.1. In [2]

this behavior was attributed to self-interactions of soft, gT scale, gauge fields (g ≡ √
4παs).

However, much less is known about the corrections suffered by dynamical quantities, in par-

ticular those which are leading-order sensitive to the gT scale, such as photon production

rates [3–6], jet energy loss [6, 7], heavy quark energy loss [8, 9] and transport coefficients

(such as shear viscosity) [10]. These quantities all are leading-order sensitive to the gT

scale, in the sense that they would be logarithmically infrared divergent were the screening

effects which arise at this scale not properly resummed, and are “dynamical” in the sense

that they describe real-time physics, making their extraction difficult from Euclidean space

correlators (and thus from lattice data).

The plasma effects which arise at the gT scale are usually resummed, in a gauge invari-

ant way, by means of Braaten and Pisarski’s hard thermal loop (HTL) effective theory [11].

This effective theory incorporates, to leading order in g, the effects from the scale T on the
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scale gT , in terms of (nonlocal) effective propagators and vertices. These ingredients can be

used to build a loop expansion, which, so long as only the soft scale gT enters a problem,

is an expansion into powers of g. Thus, since the above-listed dynamical quantities are

leading-order sensitive to the gT scale, one expects them to receive potentially large O(g)

corrections from soft loops in the HTL theory.

Until recently, there had been no calculation of the O(g) corrections received by any

of these quantities. We believe there is a certain technical advantage in performing such

calculations directly in Minkowski space, using real-time (Schwinger-Keldysh) techniques;

however to the best of our knowledge a systematic discussion of the HTL theory within

this formalism is presently lacking from the literature. In this essentially technical paper

we provide just such a discussion; the resulting techniques has been applied to a next-to-

leading order calculation of nonrelativistic heavy quark diffusion in [12].

This paper is organized as follows. In section 2 we briefly recall the rules of the real-

time formalism, in particular within the so-called Keldysh (“r/a”) basis. In section 3 we

show, by a power-counting argument, that the HTL effective theory takes on an especially

simple form in this basis: the only HTL amplitudes (with external gauge bosons) carry at

most two a Keldysh indices, though arbitrarily many r indices. In section 4 we compute

these amplitudes, which have a simple and physically transparent form, and give their

generating functional.

A convenient set of effective graphical rules which generate the real-time HTL theory is

given in section 5; these rules are essentially a graphical realization of the nonabelian Vlasov

equations (including, as well, Gaussian fluctuations in the particle distribution functions.)

We discuss the relationships between our results and previous work, and with the classical

plasma physics of a gas of point-like nonabelian charges, in section 6. Since our method of

analysis appears to shed little light on the structure of real-time perturbation theory when

soft fermions are involved, we leave the analysis of fermionic HTLs to future work.

2 The real-time formalism

The real-time formalism allows the description of the dynamical evolution of expectation

values within some initial state or density matrix (as opposed to “in-out” transition ampli-

tudes). The formalism is characterized by a doubling of the degrees of freedom: in addition

to the usual “φ1” fields which implement forward time evolution, one should path-integrate

over a second set of fields, “φ2”, which implement time evolution backward in time to some

initial time. We work in the so-called Keldysh r/a basis, obtained via the change of basis

φr = 1
2(φ1 + φ2) and φa = φ1 − φ2, and let the initial time at which the system’s density

matrix is defined go to −∞. For a review we refer the reader to [13] (see also [14]).1

Here we merely recall the rules of perturbation theory in this context. In thermal

equilibrium the propagator is a 2 × 2 matrix, which takes the form

G ≡
(

Grr Gra

Gar Gaa

)

=





(GR − GA)

(

1

2
± n(p0)

)

GR

GA 0



 , (2.1)

1Our r/a fields correspond to the 1/2 fields of the “physical representation” used by these authors.
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Figure 1. Example of a Feynman diagram in the r/a formalism, with (a) explicit marking of r/a

indices and (b) our graphical notation. The propagators which carry arrows are retarded, and the

cut propagator is an rr propagator.

where n(p0) ≡ 1/(ep0/T ∓ 1) denote the standard Bose-Einstein and Fermi-Dirac distribu-

tions, for bosons and fermions respectively. For a free scalar field, the retarded propagator

GR would be given as2 GR(P ) = −i/(P 2 + m2 − iǫp0) in Fourier space. The general

form (2.1) holds nonperturbatively: the propagator is completely determined by GR. The

chief reason for using the r/a basis in this work is that Bose-Einstein distributions, which

play a key role when treating soft physics, appear in only one matrix element of the prop-

agator, and are therefore most conveniently managed.

To perform perturbative calculations, one must sum over the r/a assignments for all

internal legs in Feynman diagrams, subject to the restriction that the vertices carry an

odd number of a indices. The vertices having one a index coincide with the standard zero-

temperature ones, and those having three a indices are smaller by a factor 1/4. External

r and a fields in correlation functions carry distinct physical meaning: since the difference

field φa is analogous to an interaction term which would be added to the Hamiltonian,

general correlators of a and r fields may be understood in terms of the (retarded) nonlinear

response induced by the a fields on some correlator of r fields [13]. Correlators in which

the a field has the largest time argument vanish, φa(t) → 0 as t → ∞.

In the classical regime where fields develop large expectation values, only the averaged

field φr becomes large whereas the differenced field φa remains small (see, for instance, [15]).

This is why the r/a basis is so convenient for the purposes of this paper.

We graphically represent Feynman diagrams in the r/a formalism by drawing incoming

arrows on r fields which enter interaction vertices, and outgoing arrows on a fields. With

this notation, retarded and advanced propagators bear a single arrow, which points in

the direction of the flow of time. An rr propagator carries two outgoing arrows, which

we separate by a “cut”: we think of the cut as a place where the time flow can start.

Sometimes we will omit to draw the arrows on these propagators, which should create no

confusion. The (tree-level) interaction vertices all have an odd number of outgoing arrows.

Our graphical notation is illustrated in figure 1 (incidentally, it appears closely related to

the “ǫ-flow” employed in [16]). Incidentally, this particular diagram vanishes, because it

contains a closed loop of retarded propagators.

2Our metric is (−+++), and following finite temperature conventions, we capitalize four-vectors but

write their components as lowercase.
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Ingredient Parametric strength

Soft (bosonic) retarded propagator 1/g2T 2

Soft (bosonic) rr propagator 1/g3T 2

Hard, near light-like propagator 1/gT 2

Hard three-point vertex gT

Soft three-point vertex g2T

d4Q for hard, near light-like Q gT 4

d4Q for soft Q (gT )4

Table 1. Ingredients which enter our power-counting.

3 Power counting

We consider (amputated) vertex functions in which all of the external legs are soft gauge

bosons; by soft we mean P ∼ gT and by hard we mean P ∼ T , for all components of

P . We recall that vertex functions having only one Keldysh a index, often called “fully

retarded functions”, correspond to a direct analytic continuation of the Euclidean vertex

functions [16, 17], and that these HTL amplitudes are of parametric size g2T 4−n, where

n is the number of external legs [11, 18]. Amputated vertex functions with no external

a index vanish, because correlation functions involving only a fields vanish. There are no

HTL amplitudes involving external ghost fields [11], at least within the classes of covariant

and Coulomb gauges, so we will not consider diagrams with external ghost lines. We now

show that loop amplitudes with n external legs, na of which bearing Keldysh a indices,

can only compete with the above-mentioned HTL amplitudes if they are of parametric size

g3−naT 4−n. Then we show that no hard loop can be parametrically larger than gT 4−n,

implying that vertex functions with na ≥ 3 are not part of the HTL theory. We also show

that the soft contribution to one-loop amplitudes behaves like g4−naT 4−n and produces

subleading effects relative to the HTLs, although vertex functions with na ≥ 3 are soft-

dominated, not hard-dominated. The key ingredients entering our power-counting are

summarized in table 1.

Vertex functions with more external Keldysh a indices, when they appear within Feyn-

man diagrams, tend to be suppressed due to the (absence of) Bose-Einstein factors on the

propagators connecting to them. To see this, we note that when a vertex function carries

an a index, the Keldysh index on the remote side of the propagator connecting to it must

necessarily be an r index, because of the absence of an aa propagator. There thus auto-

matically exists a corresponding diagram in which the a index on the vertex function is

replaced with an r, and the ar propagator replaced with an rr propagator; since for soft

external momenta the latter propagator is larger by one Bose-Einstein factor T/p0 ∼ 1/g,

we see that the original vertex function will only compete with the latter if it is parametri-

cally larger by one factor 1/g. By induction this proves our first claim: amputated vertex

functions with n external legs, na of which carrying a indices, will only compete with the

HTL amplitudes with one external a index if they are of parametric size g3−naT 4−n.
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We now show that it is impossible for a hard loop with n soft external (gauge boson)

legs to be parametrically larger than gT 4−n. Indeed, let us consider a bosonic loop diagram

(the conclusion being unchanged for fermionic loops), having n three-point vertices and no

four-point vertices (it can be shown that the latter get suppressed in general.) The domi-

nant contribution from the region of hard loop momentum Q ∼ T arises when Q is within

gT of the light cone, in which case each propagator contributes a large ∼ 1/gT 2 factor. This

is because, for generic soft external momenta, no two hard propagators can simultaneously

become closer to the light cone than gT , and parametrically nothing special happens when

only one propagator becomes arbitrarily close the the light-cone (because of the corre-

sponding measure suppression); this region maximizes the number of simultaneously large

propagators. The estimate 1/gT 2 for hard, near light-like, propagators is independent on

the hard propagator being retarded or cut.3 The restriction of the integration measure d4Q

to the hard, near light-like region produces a factor of gT 4, and counting the n three-point

interaction vertices each as gT , we find that a hard loop with n external legs can behave at

most like gT 4−n parametrically. Actually a cancellation occurs when na = 1 so these func-

tions behave like g2T 4−n, but we will see in the next section that no such cancellation occurs

when na = 2. Together with the last paragraph, this shows that hard loops with na ≥ 3,

when appearing inside full diagrams, have subleading effects relative to those with na = 1, 2.

What about soft loops? Using the rules of the r/a formalism, it can be shown that loop

diagrams with na external a indices can contain up to na internal cut (rr) propagators.

For bosonic loops, the presence of na Bose-Einstein functions suggests that diagrams with

na large should be soft-dominated, not hard-dominated. This indeed happens: in the soft

region, a (bosonic) retarded propagator should be estimated as parametrically 1/g2T 2, a

cut propagator estimated as 1/g3T 2, a three-point interaction vertex treated as g2T , and

the integration measure treated as (gT )4. Adding up, we find that the soft loop contribution

to a bosonic loop diagram is parametrically g4−naT 4−m. Since soft loops should actually

be evaluated using effective HTL-resummed propagators and vertices, which are quite

complicated expressions, we do not expect parametric cancellations to occur.

For na = 1, 2 the soft contribution is down by exactly one power of g relative to the

hard contribution: these diagrams are truly hard-dominated and deserve to be called “hard

thermal loops.” Hard loops with arbitrary external r/a indices were considered in [19], in

which it was found that due to a cancellation hard loops with na = 3 were of parametric

order g2T 4−m (however these authors did not recognize that hard loops with na ≥ 3 only

had subleading importance in actual calculations). Thus we see that hard loops with na ≥ 3

not only have subleading effects, they are also incorrect: the corresponding diagrams are

soft-dominated, not hard-dominated. However this poses no problem to power-counting:

when present inside diagrams, soft loops having arbitrary numbers of external a indices all

contribute at the same order as the soft contribution to the na = 1 loops, e.g. are down

3Enforcing the mass-shell condition on some hard propagators, when they are Grr propagators, can

force linear combinations of the external momenta to be spacelike, but this does not represent a parametric

suppression of the phase space of the soft external momenta. What we are saying is that, for Q = R + P

with R2 = 0 and P soft, Q2
≈ 2R · P , it is fair to treat 1/(2R · P ± iǫr0) and δ(2R · P ) as parametrically

equivalent, ∼ 1/gT 2.
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Figure 2. The most general one-loop diagram with one external a index (the outgoing arrow),

but many r indices: all such diagrams only have one cut propagator. The arrow flow corresponds

to time flow; we do not specify the nature of the particle running in the loop.

by O(g) relative to the HTL contribution. Essentially what happens is that by modifying

the external r/a indices on a soft loop, one is merely transferring the Bose-Einstein factors

back and forth between the propagators outside and inside the loop.

The HTL amplitudes account for the dominant effects from hard particles on soft gauge

fields, and together with the tree interactions vertices (which are of the same order), they

can be used to set up an effective theory which contains only the gT scale. We believe that

the loop expansion within this theory, in the real-time formalism, proceeds in a way en-

tirely similar to that in the imaginary-time formalism [11]: as long as only the scale gT con-

tributes, each additional loop is suppressed by one power of g.4 In general, in a theory with

only one physical scale, one would expect the loop expansion to be an expansion into pow-

ers of g2; in the imaginary-time formalism one gets an expansion into powers of g, because

each additional soft loop can introduce one (and only one) additional Bose-Einstein factor.

Within the real-time formalism, this well-known statement must be modified to the claim

that each additional loop introduces one (and only one) additional Bose-Einstein factor or

HTL vertex functions with two external a indices. The latter vertices may be regarded as se-

cretly containing one Bose-Einstein factor, since they are larger by a factor 1/g. We will not

embark here into a general proof of this claim, which would be easy to give using the effec-

tive Feynman rules we present in section 5; we simply remark that it would be quite surpris-

ing for a systematic loop expansion to hold within one formalism, and not within another.

4 Calculation of the hard thermal loops

4.1 HTLs with one a index

The gluonic hard thermal loops having only one external Keldysh a index, often called

“fully retarded functions”, can be obtained via a direct analytic continuation of the well-

known Euclidean ones [11, 18], and thus do not need to be independently recomputed

within the real-time formalism. Nevertheless, we think it is instructive to briefly describe

the Feynman diagrams which contribute to them, and how, following [20, 21] they can be

evaluated using a simple kinetic theory of point-like particles.

4Of course, in practice such an expansion is not expected to hold up to arbitrarily high order, since other

scales should eventually enter (associated e.g. with some mean free path, or with nonperturbative, infrared

physics). However, the appearance of a new physical scale would be signaled by a divergence in the HTL

effective theory, because it contains only one scale.
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The most general one-loop Feynman diagram with one external a index, but arbitrarily

many r indices, is illustrated in figure 2. All of these diagrams contain only one cut (rr)

propagator, which occurs at the smallest time in the diagram. In terms of our graphical

notation, this structure can be tracked down to the fact that inserting an external r field

(incoming arrow) onto a diagram (involving only bare interaction vertices), be it onto

an existing vertex or onto a propagator, never modifies its arrow flow. Physically, this

structure means that these functions represent the nonlinear response of the expectation

value of the gauge current (at the a leg) due to a background field (the r legs): the Feynman

diagrams mimic the obvious quantum-mechanical procedure of starting with an initial one-

particle density matrix (here, the “cut”), evolving it under a background field, and taking

the expectation value of the current at late times.5

In [20] the problem of calculating the induced current in a soft background gauge field

(mean field) was considered, and reduced to kinetic theory:

Jµ a
ind(X) =

∑

DOF

g

∫

d3p

(2π)3
vµna(X,p), (4.1)

v · D na(X,p) = gTrr

[

tar t
b
r

]

dviEi b(X)
−dn(p)

dp
, (4.2)

where vµ = (1,p/p) represents the four-velocity of a hard particle and n denote the stan-

dard Bose-Einstein or Fermi-Dirac distributions. The second equation, to be solved with

retarded boundary conditions, determines the color-adjoint disturbance na. The concept of

point-like particles originates from the separation of scales gT ≪ T , between the momenta

of the external gauge field and that of the typical particles which contribute to the induced

current: the hard particles feel the external field as if they were point particles. The degree

of freedom count in (4.1) is: two bosonic degrees of freedom for the gauge/ghost system,

four fermionic degrees of freedom for Dirac fermions, and two bosonic degrees of freedom

for complex scalar fields; the form of the resulting equations is the same for all of these

particles, and is gauge-fixing independent [11]. A collision term is not included in (4.2)

because collisions are only relevant over 1/g2T time scales; for a more ample discussion we

refer to the review [23].

Solving for the induced current (4.1)–(4.2) with retarded boundary conditions yields

the term in the generating functional (effective action) of real-time amplitudes which is

linear in the Keldysh Aa field:

Γ(1) = m2
D

∫

dΩv

4π

∫

d4X v · Aa
1

v · D[Ar]
v ·E[Ar]

≡ m2
D

∫

dΩv

4π

∫

d4X

∫ ∞

0
dτ vµAµ a

a (X)Uab(X,X − vτ)[Ar] v
iEi b[Ar](X − vτ) ,(4.3)

where Uab stands for an adjoint Wilson line along the hard particle trajectories. Here we

have explicitly performed the radial integration in (4.1), leaving only the integration over

5 Structurally similar Feynman rules give the Wigthman two-point functions in a background field; see,

for instance, eq. (74) of [22].
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the angle v of the hard particles; in a generic Yang-Mill theory with NF Dirac fermions

and NS complex scalars, the degree of freedom counts add up to:

m2
D =

g2T 2

3
[CA + NF TF + NSTS ] , (4.4)

where CA = Nc and TF = TS = 1
2 in SU(Nc) gauge theory with matter in the fundamental

representation.

We find (4.3) rather physically transparent compared to its Euclidean counterpart [24,

25], however compact the latter might be. The equivalence between the analytic continu-

ation of the vertex functions derived from (4.3) and the standard Euclidean ones can be

verified from the explicit expressions for the induced current δΓEuclidean/δA given in [25].

It is a rather nontrivial, although necessary, property of these functions that they become

symmetrical in all of their arguments (including the a leg) when the boundary conditions

are made symmetrical, by analytically continuing the momenta to imaginary frequencies.

However, it is this very asymmetry between the a leg (“induced current”) and the r legs

(“external fields”) of the fully retarded vertex functions, at physical values of the mo-

menta, which makes the generating functional (4.3) so simple. We describe the Fourier

space amplitudes derived from (4.3) in more detail, in section 5.

4.2 HTLs with two a indices

We now compute the hard thermal loops with two external a indices, beginning with the aa

self-energy. The relevant Feynman diagrams are shown in figure 3 (a)–(c); the propagators

in these diagrams are most conveniently added together under the integration sign:

Grr(Q)Grr(R) +
1

4
GR(Q)GR(R) +

1

4
GA(Q)GA(R) ≃ 1

2

[

G>(Q)G>(R) + G<(Q)G<(R)
]

,

(4.5)

the equality holding up to analytic terms which integrate to zero such as GR(Q)GA(R)

(“closed loops of retarded propagators”), which we have subtracted in passing to the right-

hand side. Here the propagators G>,< denote the Wightman (unordered) two-point func-

tions, and we have employed the identities GR − GA = G> − G<, Grr = 1
2 (G> + G<).

Equation (4.5) states that the aa self-energy is the average of the two Wightman self-

energies, a cutting pattern which we graphically represent with two parallel lines, as in

figure 3 (d), in analogy with our notation for the Grr propagator. Evaluating the loop for

a complex scalar field, for definiteness, yields:

iΓaa
ab
µν(P ) = −g2Trr

[

tar t
b
r

]

∫

d4Q

(2π)4
(2Q + P )µ(2Q + P )ν

G>(Q)G>(R) + G<(Q)G<(R)

2

≈ −g2
∑

DOF

Trr

[

tar t
b
r

]

∫

d3q

(2π)3
2πδ(v · P ) vµvν nB(q)(1 + nB(q)) , (4.6)

where on the second line we have used P ≪ Q since the integral is saturated for Q ∼ T .

We see that the calculation of this self-energy is relatively simple, compared to the corre-

sponding retarded HTL self-energy: since no O(g) cancellation occurs, all P ≪ Q approxi-

mations can be applied directly. Particles of different spins yield similar contributions (up

– 8 –
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Figure 3. (a)-(c): Diagrams contributing to the aa gluon self-energy, with momentum assignments

displayed on the first diagram. (d) The sum of the three preceding diagrams. The double cut

represents the average of the Wightman cuts in the two direction.

Figure 4. The most general form of diagram contributing to gluon HTLs with two a indices but

many r indices. Diagrams with four point vertices are subleading. The double-cut has the same

meaning as in figure 3.

to O(g) corrections), and one gets the same degree of freedom count as in (4.1). The self-

energy (4.6) could also be obtained by means of the KMS (fluctuation-dissipation) relation,

which relates the aa HTL self-energy to T/p0 times the discontinuity of the retarded HTL

self-energy.

Equation (4.6) has a rather straightforward physical interpretation: the double cut in

diagram (d) describes thermodynamical equal-time fluctuations,

〈na(x,q)nb(x′,q′)〉 = Trr

[

tar t
b
r

]

δ3(x− x′)(2π)3δ3(q − q′)nB(q)(1 + nB(q)) , (4.7)

affecting the distribution functions which appear in (4.1). Expression (4.6) is precisely (i)2

times the Fourier transform of the unequal time correlator derived from (4.7), by means of

ballistic propagation v·∂na(X,q) = 0. Considerations of gauge invariance immediately sug-

gest that to obtain the fluctuation functions with external r gauge fields, one should merely

substitute this free ballistic propagation with a gauge-covariant one, v ·D[Ar]n
a(X,q) = 0.

Not surprisingly, this expectation is borne out by explicit calculations. This is espe-

cially obvious to see if one begins with a reorganization of the r/a structure of the relevant

diagrams, in a way analogous to (4.5) above. Indeed, although a direct application of the

rules of the Schwinger-Keldysh formalism would yield diagrams which correspond to insert-

ing the external r fields onto the diagrams (a)-(c) of figure 3, it can be proved that their sum

is equivalent to what is obtained by inserting the r fields directly onto the simpler diagram

(d): all of the diagrams thus obtained contain two cut (Wightman) propagators, which

appear at the smallest time, as illustrated in figure 4. Making all small P approximations

to the propagators and vertices in these diagrams amounts to taking the propagation of the

hard particles to be eikonal, e.g. given by Wilson lines along their classical trajectories, jus-

tifying the procedure mentioned in the preceding paragraph of replacing v ·∂ with v ·D[Ar].

– 9 –



J
H
E
P
0
4
(
2
0
0
9
)
0
0
4

(a)

(b)

(c)

µ ν

µ

µ
P

= im2
Dδµ

0 δν
0

= iT vµ

= ip0 vµ

�
�
�
�
�

�
�
�
�
�

��

µ, b

a c = −vµfabc

P
=

−i

v · P−

P
= 2πδ(v · P )

(d)

(e)

(f)

Figure 5. Effective Feynman rules for the HTL theory in the r/a formalism. The arrows follow the

graphical notation for r/a diagrams introduced in section 2. All two-point functions are proportional

to the identity in color space, δab, not explicitly shown. A factor (m2

D
/T )

∫

dΩv

4π
must be given to

every disjoint double line appearing in a diagram.

Thus, upon performing the radial integration in (4.6), we obtain the generating func-

tional for vertex functions with two a indices (with m2
D as in (4.4)):

Γ(2) =
m2

DiT

2

∫

dΩv

4π

∫

d4X

∫ ∞

−∞

dτ vµAµ a
a (X)Uab(X,X − vτ)[Ar] vνAν b

a (X − vτ) (4.8)

Although it should be rather obvious, from their manifest gauge-covariance, that the

vertex functions obtained from (4.3) and (4.8) obey a large class of Ward identities, we

remark that the full HTL effective action Γ(1) + Γ(2) is not strictly invariant under the

whole set of Schwinger-Keldysh gauge transformations.6 Such a strict invariance would

require the inclusion of terms which are O(A3
a) and higher order in the Keldysh Aa fields,

which, however, we prefer not to include since we argued in section 3 that such terms are

not part of the HTL effective theory.

5 Feynman rules for kinetic theory

We now present a concise set of Feynman rules which generates the complete (gluonic)

HTL effective theory in the real-time formalism. To obtain these rules we first rewrite the

induced current δΓ/δAa from (4.3) into the form:

Jµ a
ind(X) = m2

D

[

−A0(X)δµ
0 +

∫

dΩv

4π

1

v · D∂0v · Aa

]

, (5.1)

where we have decomposed the electric field as Ei = ∂0v·A−v·DA0 and used
∫

dΩv

4π vµ = δµ
0 .

Expressions of the form (1/v ·D)S should be understood as the solution of v ·D = S with

retarded boundary conditions, e.g. the adjoint Wilson line in (4.3).

The graphical rules given in figure 5 reproduce this induced current, which gives the

amplitudes with only one external a index (outgoing arrow). Specifically, the A0δµ
0 term

in (5.1), which gives rise to a “contact term” in the retarded self-energy, is mapped to the

component (a) of figure 5. The second, non-local term in (5.1) is mapped to a class of dia-

grams, in which an incoming gluon first generates a disturbance in the distribution function

6More precisely it is invariant under those infinitesimal gauge transformations whose parameter is a

Keldysh r field, but not under those for which it is an a field.
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(a) (b)

P, µ, a
Q, ν, b R, σ, c

P1, µ, a P2, ν, b

Q, σ, c

Figure 6. Effective Feynman diagrams contributing to HTLs with three external legs, up to

permutations. (a) HTLs with one a index. HTL. (b) HTLs with two a indices.

associated with the four-velocity vµ via vertex (c), which is then evolved using the eikon-

alized retarded propagator (e) and interaction vertex (d). The current associated with this

disturbance sources a gauge field via vertex (b). Finally, one must perform the integration

over the disturbed particle’s momentum by adjoining a factor m2
D

∫

dΩv

4π to all double lines

in a diagram. The cut eikonal propagator (f), which plays no role in the calculation of the

HTL amplitudes with only one external a index, enters the calculation of amplitudes with

two external a indices (in which it appears exactly once). By (v · P−) we mean

1

v · P−
≡ 1

v · P − iǫ
. (5.2)

The effective propagators and interaction vertices of figure 5 are to be used in building

Feynman diagrams according to the standard rules of the r/a formalism; the objects (a)-

(c) correspond to ar interaction vertices, the propagator (e) is a retarded (ra) propagator

and (f) represents an rr propagator. The interaction vertex (d) carries arr indices and

is the only such interaction vertex in this theory; there is no three-point vertex involving

an a gluon. In practice the self-energies on soft gluon lines must be resummed; when this

resummation is performed the insertion (a) should be ignored, as well as all diagrams in

which only two gluons connect to a double line. We have not explicitly shown the tree

interaction vertices between soft gluons, although these are of the same order as the HTL

ones and must be included in the effective theory.

The double lines in our graphical rules may be thought of as two-particle states (alter-

natively, one-particle density matrices): in general, by “opening up” these double lines the

one-loop diagrams considered in section 4 are recovered, or more precisely, specific sums of

these diagrams. As we comment on below, these graphical rules represent purely classical

plasma physics.

5.1 An example

As an example of the application of these rules, we evaluate the three-point HTLs. The rel-

evant diagrams are shown in figure 6, and upon adding their permutations, the application

of the rules produces:

Γarr
abc
µνσ(P ;Q,R) = im2

Dfabc

∫

dΩv

4π

vµvνvσ

v · P−

[

r0

v · R−
− q0

v · Q−

]

, (5.3)

Γaar
abc
µνσ(P1, P2;Q) = m2

DTfabc

∫

dΩv

4π

vµvνvσ

v · Q−
[2πδ(v · P2) − 2πδ(v · P1)] . (5.4)
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Our notation for Γ, which corresponds to (−i) times the amputated Feynman diagrams

themselves, is that the momenta written before the semicolon are outgoing and the others

are incoming. In particular, momentum conservation implies P = Q + R and P1 + P2 = Q

(see figure 6). Our result for the retarded three-point function agrees with the standard

one; we have also verified the four-point function. Our result (5.4) for the vertex function

with two a indices agrees with that of [19], eq. (III.18e) (one must take into account that

their ΓRRA function is 2i times our Γaar, that their momenta are incoming, and their metric

is different from ours.)

6 Discussion

In this paper we have given the generating functional for all hard thermal loops in the

real-time formalism, (4.3) and (4.8). The form of these amplitudes is deceptively simple: a

classical plasma physicist, instructed of the fact that nonabelian charges tend to precess in

the presence of a gauge field, would have known enough to simply write them down decades

ago. Indeed, we find that there are only two kinds of HTL amplitudes: amplitudes with only

one external Keldysh a index, which describe the (nonlinear) polarizability of a medium

of nonabelian point-charges, and amplitudes with two external Keldysh a indices, which

represent current-current correlations in such a medium. What we think is most interesting

about our findings, is the fact that these functions form the complete real-time HTL theory.

The essential reason for this, discussed in section 3, is that the Keldysh a (“difference”)

fields, compared to the Keldysh r (“average”) fields, are unable to take advantage of the

large occupation numbers of the soft gauge fields, hence diagrams containing more Keldysh

a indices naturally tend to be subleading. Incidentally, soft loop amplitudes with more than

two external a indices would actually be soft-dominated, not hard-dominated.

We have given simple effective Feynman rules, in section 5, which generate the hard

thermal loop amplitudes; physically these rules are nothing but a graphical representation

of the nonabelian Vlasov equations (see e.g. [23] or [26]). Diagrams not involving the

cut propagator (f) of figure 5, account for the classically induced current (5.1) due to a

background mean field, and whenever this (f) propagator appears, its role is to account

for the Gaussian fluctuations (4.7) of the particle distribution functions (corresponding to

fluctuations of the “W” fields in the language of [23]). The importance of such Gaussian

fluctuations was discussed previously in the context of the hot electroweak theory [27]; the

analysis of the HTL theory given in [28], of which we became aware after this work was

completed, bears much similarity to ours.

Our findings extend in a straightforward manner to nonequilibrium setups: one should

simply replace the distribution functions in (4.1) and (4.7) by their time-dependent expres-

sions. As was argued for in great detail in [29], this procedure will be correct provided the

naive criterion for it to make sense is satisfied: the distribution functions of the particles

should be slowly varying on the length and time scale set by the “soft” gauge fields (those

for which the HTL effects become important). Also, the perturbation theory employed

here should make sense: this requires a separation of scales between the “soft” scale and
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the momenta of the particles which dominate the integrals (4.1) and (4.7) (in this paper

this separation is gT ≪ T ).

Even though the close relationship between the HTL theory and classical plasma

physics has been widely recognized for a long time, it was not clear, at least to the author,

how this understanding could be exploited in the context of the next-to-leading order cal-

culation of dynamical quantities like the ones listed in the introduction. The difficulty is

that at leading order one has to deal not only with soft, classical physics, but also with

some truly quantum physics. This is the context in which we believe a systematic, a priori

fully quantum mechanical approach as pursued in this paper, starting from the Feynman

diagrams of the real-time formalism, can be most useful.
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